Martín Escardó 1st May 2020.
This is ported from the Midlands Graduate School 2019 lecture notes, which are available online from the following links.
{-# OPTIONS --without-K --exact-split --safe #-} module MGS-HAE where open import MGS-Equivalence-Induction public is-hae : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } → (X → Y) → 𝓤 ⊔ 𝓥 ̇ is-hae f = Σ g ꞉ (codomain f → domain f) , Σ η ꞉ g ∘ f ∼ id , Σ ε ꞉ f ∘ g ∼ id , ((x : domain f) → ap f (η x) ≡ ε (f x)) haes-are-invertible : {X : 𝓤 ̇ } {Y : 𝓥 ̇} (f : X → Y) → is-hae f → invertible f haes-are-invertible f (g , η , ε , τ) = g , η , ε transport-ap-≃ : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) {x x' : X} (a : x' ≡ x) (b : f x' ≡ f x) → (transport (λ - → f - ≡ f x) a b ≡ refl (f x)) ≃ (ap f a ≡ b) transport-ap-≃ f (refl x) b = γ where γ : (b ≡ refl (f x)) ≃ (refl (f x) ≡ b) γ = ⁻¹-≃ b (refl (f x)) haes-are-equivs : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-hae f → is-equiv f haes-are-equivs f (g , η , ε , τ) y = γ where c : (φ : fiber f y) → (g y , ε y) ≡ φ c (x , refl .(f x)) = q where p : transport (λ - → f - ≡ f x) (η x) (ε (f x)) ≡ refl (f x) p = ⌜ ≃-sym (transport-ap-≃ f (η x) (ε (f x))) ⌝ (τ x) q : (g (f x) , ε (f x)) ≡ (x , refl (f x)) q = to-Σ-≡ (η x , p) γ : is-singleton (fiber f y) γ = (g y , ε y) , c id-is-hae : (X : 𝓤 ̇ ) → is-hae (𝑖𝑑 X) id-is-hae X = 𝑖𝑑 X , refl , refl , (λ x → refl (refl x)) ua-equivs-are-haes : is-univalent 𝓤 → {X Y : 𝓤 ̇ } (f : X → Y) → is-equiv f → is-hae f ua-equivs-are-haes ua {X} {Y} = 𝕁-equiv ua (λ X Y f → is-hae f) id-is-hae X Y equivs-are-haes : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-equiv f → is-hae f equivs-are-haes {𝓤} {𝓥} {X} {Y} f i = (g , η , ε , τ) where g : Y → X g = inverse f i η : g ∘ f ∼ id η = inverses-are-retractions f i ε : f ∘ g ∼ id ε = inverses-are-sections f i τ : (x : X) → ap f (η x) ≡ ε (f x) τ x = γ where φ : fiber f (f x) φ = center (fiber f (f x)) (i (f x)) by-definition-of-g : g (f x) ≡ fiber-point φ by-definition-of-g = refl _ p : φ ≡ (x , refl (f x)) p = centrality (fiber f (f x)) (i (f x)) (x , refl (f x)) a : g (f x) ≡ x a = ap fiber-point p b : f (g (f x)) ≡ f x b = fiber-identification φ by-definition-of-η : η x ≡ a by-definition-of-η = refl _ by-definition-of-ε : ε (f x) ≡ b by-definition-of-ε = refl _ q = transport (λ - → f - ≡ f x) a b ≡⟨ refl _ ⟩ transport (λ - → f - ≡ f x) (ap pr₁ p) (pr₂ φ) ≡⟨ t ⟩ transport (λ - → f (pr₁ -) ≡ f x) p (pr₂ φ) ≡⟨ apd pr₂ p ⟩ refl (f x) ∎ where t = (transport-ap (λ - → f - ≡ f x) pr₁ p b)⁻¹ γ : ap f (η x) ≡ ε (f x) γ = ⌜ transport-ap-≃ f a b ⌝ q equivs-are-haes' : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → is-equiv f → is-hae f equivs-are-haes' f e = (inverse f e , inverses-are-retractions f e , inverses-are-sections f e , τ) where τ : ∀ x → ap f (inverses-are-retractions f e x) ≡ inverses-are-sections f e (f x) τ x = ⌜ transport-ap-≃ f (ap pr₁ p) (pr₂ φ) ⌝ q where φ : fiber f (f x) φ = pr₁ (e (f x)) p : φ ≡ (x , refl (f x)) p = pr₂ (e (f x)) (x , refl (f x)) q : transport (λ - → f - ≡ f x) (ap pr₁ p) (pr₂ φ) ≡ refl (f x) q = (transport-ap (λ - → f - ≡ f x) pr₁ p ((pr₂ φ)))⁻¹ ∙ apd pr₂ p equiv-invertible-hae-factorization : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → equivs-are-invertible f ∼ haes-are-invertible f ∘ equivs-are-haes f equiv-invertible-hae-factorization f e = refl (equivs-are-invertible f e) half-adjoint-condition : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) (e : is-equiv f) (x : X) → ap f (inverses-are-retractions f e x) ≡ inverses-are-sections f e (f x) half-adjoint-condition f e = pr₂ (pr₂ (pr₂ (equivs-are-haes f e))) Σ-change-of-variable : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (A : Y → 𝓦 ̇ ) (f : X → Y) → is-equiv f → (Σ y ꞉ Y , A y) ≃ (Σ x ꞉ X , A (f x)) Σ-change-of-variable {𝓤} {𝓥} {𝓦} {X} {Y} A f i = γ where g = inverse f i η = inverses-are-retractions f i ε = inverses-are-sections f i τ = half-adjoint-condition f i φ : Σ A → Σ (A ∘ f) φ (y , a) = (g y , transport A ((ε y)⁻¹) a) ψ : Σ (A ∘ f) → Σ A ψ (x , a) = (f x , a) ψφ : (z : Σ A) → ψ (φ z) ≡ z ψφ (y , a) = p where p : (f (g y) , transport A ((ε y)⁻¹) a) ≡ (y , a) p = to-Σ-≡ (ε y , transport-is-retraction A (ε y) a) φψ : (t : Σ (A ∘ f)) → φ (ψ t) ≡ t φψ (x , a) = p where a' : A (f (g (f x))) a' = transport A ((ε (f x))⁻¹) a q = transport (A ∘ f) (η x) a' ≡⟨ transport-ap A f (η x) a' ⟩ transport A (ap f (η x)) a' ≡⟨ ap (λ - → transport A - a') (τ x) ⟩ transport A (ε (f x)) a' ≡⟨ transport-is-retraction A (ε (f x)) a ⟩ a ∎ p : (g (f x) , transport A ((ε (f x))⁻¹) a) ≡ (x , a) p = to-Σ-≡ (η x , q) γ : Σ A ≃ Σ (A ∘ f) γ = invertibility-gives-≃ φ (ψ , ψφ , φψ) ~-naturality : {X : 𝓤 ̇ } {A : 𝓥 ̇ } (f g : X → A) (H : f ∼ g) {x y : X} {p : x ≡ y} → H x ∙ ap g p ≡ ap f p ∙ H y ~-naturality f g H {x} {_} {refl a} = refl-left ⁻¹ ~-naturality' : {X : 𝓤 ̇ } {A : 𝓥 ̇ } (f g : X → A) (H : f ∼ g) {x y : X} {p : x ≡ y} → H x ∙ ap g p ∙ (H y)⁻¹ ≡ ap f p ~-naturality' f g H {x} {x} {refl x} = ⁻¹-right∙ (H x) ~-id-naturality : {X : 𝓤 ̇ } (h : X → X) (η : h ∼ id) {x : X} → η (h x) ≡ ap h (η x) ~-id-naturality h η {x} = η (h x) ≡⟨ refl _ ⟩ η (h x) ∙ refl (h x) ≡⟨ i ⟩ η (h x) ∙ (η x ∙ (η x)⁻¹) ≡⟨ ii ⟩ η (h x) ∙ η x ∙ (η x)⁻¹ ≡⟨ iii ⟩ η (h x) ∙ ap id (η x) ∙ (η x)⁻¹ ≡⟨ iv ⟩ ap h (η x) ∎ where i = ap (η(h x) ∙_) ((⁻¹-right∙ (η x))⁻¹) ii = (∙assoc (η (h x)) (η x) (η x ⁻¹))⁻¹ iii = ap (λ - → η (h x) ∙ - ∙ η x ⁻¹) ((ap-id (η x))⁻¹) iv = ~-naturality' h id η {h x} {x} {η x} invertibles-are-haes : {X : 𝓤 ̇ } {Y : 𝓥 ̇ } (f : X → Y) → invertible f → is-hae f invertibles-are-haes f (g , η , ε) = g , η , ε' , τ where ε' = λ y → f (g y) ≡⟨ (ε (f (g y)))⁻¹ ⟩ f (g (f (g y))) ≡⟨ ap f (η (g y)) ⟩ f (g y) ≡⟨ ε y ⟩ y ∎ module _ (x : domain f) where p = η (g (f x)) ≡⟨ ~-id-naturality (g ∘ f) η ⟩ ap (g ∘ f) (η x) ≡⟨ ap-∘ f g (η x) ⟩ ap g (ap f (η x)) ∎ q = ap f (η (g (f x))) ∙ ε (f x) ≡⟨ by-p ⟩ ap f (ap g (ap f (η x))) ∙ ε (f x) ≡⟨ by-ap-∘ ⟩ ap (f ∘ g) (ap f (η x)) ∙ ε (f x) ≡⟨ by-~-naturality ⟩ ε (f (g (f x))) ∙ ap id (ap f (η x)) ≡⟨ by-ap-id ⟩ ε (f (g (f x))) ∙ ap f (η x) ∎ where by-p = ap (λ - → ap f - ∙ ε (f x)) p by-ap-∘ = ap (_∙ ε (f x)) ((ap-∘ g f (ap f (η x)))⁻¹) by-~-naturality = (~-naturality (f ∘ g) id ε {f (g (f x))} {f x} {ap f (η x)})⁻¹ by-ap-id = ap (ε (f (g (f x))) ∙_) (ap-id (ap f (η x))) τ = ap f (η x) ≡⟨ refl-left ⁻¹ ⟩ refl (f (g (f x))) ∙ ap f (η x) ≡⟨ by-⁻¹-left∙ ⟩ (ε (f (g (f x))))⁻¹ ∙ ε (f (g (f x))) ∙ ap f (η x) ≡⟨ by-∙assoc ⟩ (ε (f (g (f x))))⁻¹ ∙ (ε (f (g (f x))) ∙ ap f (η x)) ≡⟨ by-q ⟩ (ε (f (g (f x))))⁻¹ ∙ (ap f (η (g (f x))) ∙ ε (f x)) ≡⟨ refl _ ⟩ ε' (f x) ∎ where by-⁻¹-left∙ = ap (_∙ ap f (η x)) ((⁻¹-left∙ (ε (f (g (f x)))))⁻¹) by-∙assoc = ∙assoc ((ε (f (g (f x))))⁻¹) (ε (f (g (f x)))) (ap f (η x)) by-q = ap ((ε (f (g (f x))))⁻¹ ∙_) (q ⁻¹)