MartΓn EscardΓ³ 1st May 2020.
This is ported from the Midlands Graduate School 2019 lecture notes, which are available online from the following links.
{-# OPTIONS --without-K --exact-split --safe #-} module MGS-Retracts where open import MGS-hlevels public has-section : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ has-section r = Ξ£ s κ (codomain r β domain r), r β s βΌ id _β_ : π€ Μ β π₯ Μ β π€ β π₯ Μ X β Y = Ξ£ r κ (Y β X), has-section r retraction : {X : π€ Μ } {Y : π₯ Μ } β X β Y β Y β X retraction (r , s , Ξ·) = r section : {X : π€ Μ } {Y : π₯ Μ } β X β Y β X β Y section (r , s , Ξ·) = s retract-equation : {X : π€ Μ } {Y : π₯ Μ } (Ο : X β Y) β retraction Ο β section Ο βΌ ππ X retract-equation (r , s , Ξ·) = Ξ· retraction-has-section : {X : π€ Μ } {Y : π₯ Μ } (Ο : X β Y) β has-section (retraction Ο) retraction-has-section (r , h) = h id-β : (X : π€ Μ ) β X β X id-β X = ππ X , ππ X , refl _ββ_ : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } β X β Y β Y β Z β X β Z (r , s , Ξ·) ββ (r' , s' , Ξ·') = (r β r' , s' β s , Ξ·'') where Ξ·'' = Ξ» x β r (r' (s' (s x))) β‘β¨ ap r (Ξ·' (s x)) β© r (s x) β‘β¨ Ξ· x β© x β _ββ¨_β©_ : (X : π€ Μ ) {Y : π₯ Μ } {Z : π¦ Μ } β X β Y β Y β Z β X β Z X ββ¨ Ο β© Ο = Ο ββ Ο _β : (X : π€ Μ ) β X β X X β = id-β X Ξ£-retract : {X : π€ Μ } {A : X β π₯ Μ } {B : X β π¦ Μ } β ((x : X) β A x β B x) β Ξ£ A β Ξ£ B Ξ£-retract {π€} {π₯} {π¦} {X} {A} {B} Ο = NatΞ£ r , NatΞ£ s , Ξ·' where r : (x : X) β B x β A x r x = retraction (Ο x) s : (x : X) β A x β B x s x = section (Ο x) Ξ· : (x : X) (a : A x) β r x (s x a) β‘ a Ξ· x = retract-equation (Ο x) Ξ·' : (Ο : Ξ£ A) β NatΞ£ r (NatΞ£ s Ο) β‘ Ο Ξ·' (x , a) = x , r x (s x a) β‘β¨ to-Ξ£-β‘' (Ξ· x a) β© x , a β transport-is-retraction : {X : π€ Μ } (A : X β π₯ Μ ) {x y : X} (p : x β‘ y) β transport A p β transport A (p β»ΒΉ) βΌ ππ (A y) transport-is-retraction A (refl x) = refl transport-is-section : {X : π€ Μ } (A : X β π₯ Μ ) {x y : X} (p : x β‘ y) β transport A (p β»ΒΉ) β transport A p βΌ ππ (A x) transport-is-section A (refl x) = refl Ξ£-reindexing-retract : {X : π€ Μ } {Y : π₯ Μ } {A : X β π¦ Μ } (r : Y β X) β has-section r β (Ξ£ x κ X , A x) β (Ξ£ y κ Y , A (r y)) Ξ£-reindexing-retract {π€} {π₯} {π¦} {X} {Y} {A} r (s , Ξ·) = Ξ³ , Ο , Ξ³Ο where Ξ³ : Ξ£ (A β r) β Ξ£ A Ξ³ (y , a) = (r y , a) Ο : Ξ£ A β Ξ£ (A β r) Ο (x , a) = (s x , transport A ((Ξ· x)β»ΒΉ) a) Ξ³Ο : (Ο : Ξ£ A) β Ξ³ (Ο Ο) β‘ Ο Ξ³Ο (x , a) = p where p : (r (s x) , transport A ((Ξ· x)β»ΒΉ) a) β‘ (x , a) p = to-Ξ£-β‘ (Ξ· x , transport-is-retraction A (Ξ· x) a) singleton-type : {X : π€ Μ } β X β π€ Μ singleton-type {π€} {X} x = Ξ£ y κ X , y β‘ x singleton-type-center : {X : π€ Μ } (x : X) β singleton-type x singleton-type-center x = (x , refl x) singleton-type-centered : {X : π€ Μ } (x : X) (Ο : singleton-type x) β singleton-type-center x β‘ Ο singleton-type-centered x (x , refl x) = refl (x , refl x) singleton-types-are-singletons : (X : π€ Μ ) (x : X) β is-singleton (singleton-type x) singleton-types-are-singletons X x = singleton-type-center x , singleton-type-centered x retract-of-singleton : {X : π€ Μ } {Y : π₯ Μ } β Y β X β is-singleton X β is-singleton Y retract-of-singleton (r , s , Ξ·) (c , Ο) = r c , Ξ³ where Ξ³ = Ξ» y β r c β‘β¨ ap r (Ο (s y)) β© r (s y) β‘β¨ Ξ· y β© y β singleton-type' : {X : π€ Μ } β X β π€ Μ singleton-type' {π€} {X} x = Ξ£ y κ X , x β‘ y singleton-type'-center : {X : π€ Μ } (x : X) β singleton-type' x singleton-type'-center x = (x , refl x) singleton-type'-centered : {X : π€ Μ } (x : X) (Ο : singleton-type' x) β singleton-type'-center x β‘ Ο singleton-type'-centered x (x , refl x) = refl (x , refl x) singleton-types'-are-singletons : (X : π€ Μ ) (x : X) β is-singleton (singleton-type' x) singleton-types'-are-singletons X x = singleton-type'-center x , singleton-type'-centered x infix 10 _β_ infixr 0 _ββ¨_β©_ infix 1 _β