MartΓn EscardΓ³ 1st May 2020.
This is ported from the Midlands Graduate School 2019 lecture notes, which are available online from the following links.
{-# OPTIONS --without-K --exact-split --safe #-} module MGS-Equivalences where open import MGS-Retracts public invertible : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ invertible f = Ξ£ g κ (codomain f β domain f) , (g β f βΌ id) Γ (f β g βΌ id) fiber : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β Y β π€ β π₯ Μ fiber f y = Ξ£ x κ domain f , f x β‘ y fiber-point : {X : π€ Μ } {Y : π₯ Μ } {f : X β Y} {y : Y} β fiber f y β X fiber-point (x , p) = x fiber-identification : {X : π€ Μ } {Y : π₯ Μ } {f : X β Y} {y : Y} β (w : fiber f y) β f (fiber-point w) β‘ y fiber-identification (x , p) = p is-equiv : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ is-equiv f = (y : codomain f) β is-singleton (fiber f y) inverse : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-equiv f β (Y β X) inverse f e y = fiber-point (center (fiber f y) (e y)) inverses-are-sections : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) (e : is-equiv f) β f β inverse f e βΌ id inverses-are-sections f e y = fiber-identification (center (fiber f y) (e y)) inverse-centrality : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) (e : is-equiv f) (y : Y) (t : fiber f y) β (inverse f e y , inverses-are-sections f e y) β‘ t inverse-centrality f e y = centrality (fiber f y) (e y) inverses-are-retractions : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) (e : is-equiv f) β inverse f e β f βΌ id inverses-are-retractions f e x = ap fiber-point p where p : inverse f e (f x) , inverses-are-sections f e (f x) β‘ x , refl (f x) p = inverse-centrality f e (f x) (x , (refl (f x))) equivs-are-invertible : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-equiv f β invertible f equivs-are-invertible f e = inverse f e , inverses-are-retractions f e , inverses-are-sections f e invertibles-are-equivs : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β invertible f β is-equiv f invertibles-are-equivs {π€} {π₯} {X} {Y} f (g , Ξ· , Ξ΅) yβ = iii where i : (y : Y) β (f (g y) β‘ yβ) β (y β‘ yβ) i y = r , s , transport-is-section (_β‘ yβ) (Ξ΅ y) where s : f (g y) β‘ yβ β y β‘ yβ s = transport (_β‘ yβ) (Ξ΅ y) r : y β‘ yβ β f (g y) β‘ yβ r = transport (_β‘ yβ) ((Ξ΅ y)β»ΒΉ) ii : fiber f yβ β singleton-type yβ ii = (Ξ£ x κ X , f x β‘ yβ) ββ¨ Ξ£-reindexing-retract g (f , Ξ·) β© (Ξ£ y κ Y , f (g y) β‘ yβ) ββ¨ Ξ£-retract i β© (Ξ£ y κ Y , y β‘ yβ) β iii : is-singleton (fiber f yβ) iii = retract-of-singleton ii (singleton-types-are-singletons Y yβ) inverses-are-equivs : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) (e : is-equiv f) β is-equiv (inverse f e) inverses-are-equivs f e = invertibles-are-equivs (inverse f e) (f , inverses-are-sections f e , inverses-are-retractions f e) inversion-involutive : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) (e : is-equiv f) β inverse (inverse f e) (inverses-are-equivs f e) β‘ f inversion-involutive f e = refl f id-invertible : (X : π€ Μ ) β invertible (ππ X) id-invertible X = ππ X , refl , refl β-invertible : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } {f : X β Y} {f' : Y β Z} β invertible f' β invertible f β invertible (f' β f) β-invertible {π€} {π₯} {π¦} {X} {Y} {Z} {f} {f'} (g' , gf' , fg') (g , gf , fg) = g β g' , Ξ· , Ξ΅ where Ξ· = Ξ» x β g (g' (f' (f x))) β‘β¨ ap g (gf' (f x)) β© g (f x) β‘β¨ gf x β© x β Ξ΅ = Ξ» z β f' (f (g (g' z))) β‘β¨ ap f' (fg (g' z)) β© f' (g' z) β‘β¨ fg' z β© z β id-is-equiv : (X : π€ Μ ) β is-equiv (ππ X) id-is-equiv = singleton-types-are-singletons β-is-equiv : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } {f : X β Y} {g : Y β Z} β is-equiv g β is-equiv f β is-equiv (g β f) β-is-equiv {π€} {π₯} {π¦} {X} {Y} {Z} {f} {g} i j = Ξ³ where abstract Ξ³ : is-equiv (g β f) Ξ³ = invertibles-are-equivs (g β f) (β-invertible (equivs-are-invertible g i) (equivs-are-invertible f j)) inverse-of-β : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } (f : X β Y) (g : Y β Z) (i : is-equiv f) (j : is-equiv g) β inverse f i β inverse g j βΌ inverse (g β f) (β-is-equiv j i) inverse-of-β f g i j z = f' (g' z) β‘β¨ (ap (f' β g') (s z))β»ΒΉ β© f' (g' (g (f (h z)))) β‘β¨ ap f' (inverses-are-retractions g j (f (h z))) β© f' (f (h z)) β‘β¨ inverses-are-retractions f i (h z) β© h z β where f' = inverse f i g' = inverse g j h = inverse (g β f) (β-is-equiv j i) s : g β f β h βΌ id s = inverses-are-sections (g β f) (β-is-equiv j i) _β_ : π€ Μ β π₯ Μ β π€ β π₯ Μ X β Y = Ξ£ f κ (X β Y), is-equiv f Eqβfun β_β : {X : π€ Μ } {Y : π₯ Μ } β X β Y β X β Y Eqβfun (f , i) = f β_β = Eqβfun Eqβfun-is-equiv ββ-is-equiv : {X : π€ Μ } {Y : π₯ Μ } (e : X β Y) β is-equiv (β e β) Eqβfun-is-equiv (f , i) = i ββ-is-equiv = Eqβfun-is-equiv invertibility-gives-β : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β invertible f β X β Y invertibility-gives-β f i = f , invertibles-are-equivs f i Ξ£-induction-β : {X : π€ Μ } {Y : X β π₯ Μ } {A : Ξ£ Y β π¦ Μ } β ((x : X) (y : Y x) β A (x , y)) β ((z : Ξ£ Y) β A z) Ξ£-induction-β = invertibility-gives-β Ξ£-induction (curry , refl , refl) Ξ£-flip : {X : π€ Μ } {Y : π₯ Μ } {A : X β Y β π¦ Μ } β (Ξ£ x κ X , Ξ£ y κ Y , A x y) β (Ξ£ y κ Y , Ξ£ x κ X , A x y) Ξ£-flip = invertibility-gives-β (Ξ» (x , y , p) β (y , x , p)) ((Ξ» (y , x , p) β (x , y , p)) , refl , refl) Γ-comm : {X : π€ Μ } {Y : π₯ Μ } β (X Γ Y) β (Y Γ X) Γ-comm = invertibility-gives-β (Ξ» (x , y) β (y , x)) ((Ξ» (y , x) β (x , y)) , refl , refl) id-β : (X : π€ Μ ) β X β X id-β X = ππ X , id-is-equiv X _β_ : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } β X β Y β Y β Z β X β Z (f , d) β (f' , e) = f' β f , β-is-equiv e d β-sym : {X : π€ Μ } {Y : π₯ Μ } β X β Y β Y β X β-sym (f , e) = inverse f e , inverses-are-equivs f e _ββ¨_β©_ : (X : π€ Μ ) {Y : π₯ Μ } {Z : π¦ Μ } β X β Y β Y β Z β X β Z _ ββ¨ d β© e = d β e _β : (X : π€ Μ ) β X β X _β = id-β transport-is-equiv : {X : π€ Μ } (A : X β π₯ Μ ) {x y : X} (p : x β‘ y) β is-equiv (transport A p) transport-is-equiv A (refl x) = id-is-equiv (A x) Ξ£-β‘-β : {X : π€ Μ } {A : X β π₯ Μ } (Ο Ο : Ξ£ A) β (Ο β‘ Ο) β (Ξ£ p κ prβ Ο β‘ prβ Ο , transport A p (prβ Ο) β‘ prβ Ο) Ξ£-β‘-β {π€} {π₯} {X} {A} Ο Ο = invertibility-gives-β from-Ξ£-β‘ (to-Ξ£-β‘ , Ξ· , Ξ΅) where Ξ· : (q : Ο β‘ Ο) β to-Ξ£-β‘ (from-Ξ£-β‘ q) β‘ q Ξ· (refl Ο) = refl (refl Ο) Ξ΅ : (w : Ξ£ p κ prβ Ο β‘ prβ Ο , transport A p (prβ Ο) β‘ prβ Ο) β from-Ξ£-β‘ (to-Ξ£-β‘ w) β‘ w Ξ΅ (refl p , refl q) = refl (refl p , refl q) to-Γ-β‘ : {X : π€ Μ } {Y : π₯ Μ } {z t : X Γ Y} β (prβ z β‘ prβ t) Γ (prβ z β‘ prβ t) β z β‘ t to-Γ-β‘ (refl x , refl y) = refl (x , y) from-Γ-β‘ : {X : π€ Μ } {Y : π₯ Μ } {z t : X Γ Y} β z β‘ t β (prβ z β‘ prβ t) Γ (prβ z β‘ prβ t) from-Γ-β‘ {π€} {π₯} {X} {Y} (refl (x , y)) = (refl x , refl y) Γ-β‘-β : {X : π€ Μ } {Y : π₯ Μ } (z t : X Γ Y) β (z β‘ t) β (prβ z β‘ prβ t) Γ (prβ z β‘ prβ t) Γ-β‘-β {π€} {π₯} {X} {Y} z t = invertibility-gives-β from-Γ-β‘ (to-Γ-β‘ , Ξ· , Ξ΅) where Ξ· : (p : z β‘ t) β to-Γ-β‘ (from-Γ-β‘ p) β‘ p Ξ· (refl z) = refl (refl z) Ξ΅ : (q : (prβ z β‘ prβ t) Γ (prβ z β‘ prβ t)) β from-Γ-β‘ (to-Γ-β‘ q) β‘ q Ξ΅ (refl x , refl y) = refl (refl x , refl y) ap-prβ-to-Γ-β‘ : {X : π€ Μ } {Y : π₯ Μ } {z t : X Γ Y} β (pβ : prβ z β‘ prβ t) β (pβ : prβ z β‘ prβ t) β ap prβ (to-Γ-β‘ (pβ , pβ)) β‘ pβ ap-prβ-to-Γ-β‘ (refl x) (refl y) = refl (refl x) ap-prβ-to-Γ-β‘ : {X : π€ Μ } {Y : π₯ Μ } {z t : X Γ Y} β (pβ : prβ z β‘ prβ t) β (pβ : prβ z β‘ prβ t) β ap prβ (to-Γ-β‘ (pβ , pβ)) β‘ pβ ap-prβ-to-Γ-β‘ (refl x) (refl y) = refl (refl y) Ξ£-cong : {X : π€ Μ } {A : X β π₯ Μ } {B : X β π¦ Μ } β ((x : X) β A x β B x) β Ξ£ A β Ξ£ B Ξ£-cong {π€} {π₯} {π¦} {X} {A} {B} Ο = invertibility-gives-β (NatΞ£ f) (NatΞ£ g , NatΞ£-Ξ· , NatΞ£-Ξ΅) where f : (x : X) β A x β B x f x = β Ο x β g : (x : X) β B x β A x g x = inverse (f x) (ββ-is-equiv (Ο x)) Ξ· : (x : X) (a : A x) β g x (f x a) β‘ a Ξ· x = inverses-are-retractions (f x) (ββ-is-equiv (Ο x)) Ξ΅ : (x : X) (b : B x) β f x (g x b) β‘ b Ξ΅ x = inverses-are-sections (f x) (ββ-is-equiv (Ο x)) NatΞ£-Ξ· : (w : Ξ£ A) β NatΞ£ g (NatΞ£ f w) β‘ w NatΞ£-Ξ· (x , a) = x , g x (f x a) β‘β¨ to-Ξ£-β‘' (Ξ· x a) β© x , a β NatΞ£-Ξ΅ : (t : Ξ£ B) β NatΞ£ f (NatΞ£ g t) β‘ t NatΞ£-Ξ΅ (x , b) = x , f x (g x b) β‘β¨ to-Ξ£-β‘' (Ξ΅ x b) β© x , b β β-gives-β : {X : π€ Μ } {Y : π₯ Μ } β X β Y β X β Y β-gives-β (f , e) = (inverse f e , f , inverses-are-retractions f e) β-gives-β· : {X : π€ Μ } {Y : π₯ Μ } β X β Y β Y β X β-gives-β· (f , e) = (f , inverse f e , inverses-are-sections f e) equiv-to-singleton : {X : π€ Μ } {Y : π₯ Μ } β X β Y β is-singleton Y β is-singleton X equiv-to-singleton e = retract-of-singleton (β-gives-β e) infix 10 _β_ infixl 30 _β_ infixr 0 _ββ¨_β©_ infix 1 _β