Martin Escardo 1st May 2020.
This is ported from the Midlands Graduate School 2019 lecture notes, which are available online from the following links.
{-# OPTIONS --without-K --exact-split --safe #-} module MGS-Embeddings where open import MGS-More-FunExt-Consequences public is-embedding : {X : π€ Μ } {Y : π₯ Μ } β (X β Y) β π€ β π₯ Μ is-embedding f = (y : codomain f) β is-subsingleton (fiber f y) being-embedding-is-subsingleton : global-dfunext β {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-subsingleton (is-embedding f) being-embedding-is-subsingleton fe f = Ξ -is-subsingleton fe (Ξ» x β being-subsingleton-is-subsingleton fe) prβ-embedding : (A : π€ Μ ) (X : π₯ Μ ) β is-subsingleton A β is-embedding (Ξ» (z : A Γ X) β prβ z) prβ-embedding A X i x ((a , x) , refl x) ((b , x) , refl x) = p where p : ((a , x) , refl x) β‘ ((b , x) , refl x) p = ap (Ξ» - β ((- , x) , refl x)) (i a b) prβ-embedding : {X : π€ Μ } {A : X β π₯ Μ } β ((x : X) β is-subsingleton (A x)) β is-embedding (Ξ» (Ο : Ξ£ A) β prβ Ο) prβ-embedding i x ((x , a) , refl x) ((x , a') , refl x) = Ξ³ where p : a β‘ a' p = i x a a' Ξ³ : (x , a) , refl x β‘ (x , a') , refl x Ξ³ = ap (Ξ» - β (x , -) , refl x) p equivs-are-embeddings : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-equiv f β is-embedding f equivs-are-embeddings f i y = singletons-are-subsingletons (fiber f y) (i y) id-is-embedding : {X : π€ Μ } β is-embedding (ππ X) id-is-embedding {π€} {X} = equivs-are-embeddings id (id-is-equiv X) β-embedding : {X : π€ Μ } {Y : π₯ Μ } {Z : π¦ Μ } {f : X β Y} {g : Y β Z} β is-embedding g β is-embedding f β is-embedding (g β f) β-embedding {π€} {π₯} {π¦} {X} {Y} {Z} {f} {g} d e = h where A : (z : Z) β π€ β π₯ β π¦ Μ A z = Ξ£ (y , p) κ fiber g z , fiber f y i : (z : Z) β is-subsingleton (A z) i z = Ξ£-is-subsingleton (d z) (Ξ» w β e (prβ w)) Ο : (z : Z) β fiber (g β f) z β A z Ο z (x , p) = (f x , p) , x , refl (f x) Ξ³ : (z : Z) β A z β fiber (g β f) z Ξ³ z ((_ , p) , x , refl _) = x , p Ξ· : (z : Z) (t : fiber (g β f) z) β Ξ³ z (Ο z t) β‘ t Ξ· _ (x , refl _) = refl (x , refl ((g β f) x)) h : (z : Z) β is-subsingleton (fiber (g β f) z) h z = lc-maps-reflect-subsingletons (Ο z) (sections-are-lc (Ο z) (Ξ³ z , Ξ· z)) (i z) embedding-lemma : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β ((x : X) β is-singleton (fiber f (f x))) β is-embedding f embedding-lemma f Ο = Ξ³ where Ξ³ : (y : codomain f) (u v : fiber f y) β u β‘ v Ξ³ y (x , p) v = j (x , p) v where q : fiber f (f x) β‘ fiber f y q = ap (fiber f) p i : is-singleton (fiber f y) i = transport is-singleton q (Ο x) j : is-subsingleton (fiber f y) j = singletons-are-subsingletons (fiber f y) i embedding-criterion : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β ((x x' : X) β (f x β‘ f x') β (x β‘ x')) β is-embedding f embedding-criterion f e = embedding-lemma f b where X = domain f a : (x : X) β (Ξ£ x' κ X , f x' β‘ f x) β (Ξ£ x' κ X , x' β‘ x) a x = Ξ£-cong (Ξ» x' β e x' x) a' : (x : X) β fiber f (f x) β singleton-type x a' = a b : (x : X) β is-singleton (fiber f (f x)) b x = equiv-to-singleton (a' x) (singleton-types-are-singletons X x) ap-is-equiv-gives-embedding : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β ((x x' : X) β is-equiv (ap f {x} {x'})) β is-embedding f ap-is-equiv-gives-embedding f i = embedding-criterion f (Ξ» x' x β β-sym (ap f {x'} {x} , i x' x)) embedding-gives-ap-is-equiv : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-embedding f β (x x' : X) β is-equiv (ap f {x} {x'}) embedding-gives-ap-is-equiv {π€} {π₯} {X} f e = Ξ³ where d : (x' : X) β (Ξ£ x κ X , f x' β‘ f x) β (Ξ£ x κ X , f x β‘ f x') d x' = Ξ£-cong (Ξ» x β β»ΒΉ-β (f x') (f x)) s : (x' : X) β is-subsingleton (Ξ£ x κ X , f x' β‘ f x) s x' = equiv-to-subsingleton (d x') (e (f x')) Ξ³ : (x x' : X) β is-equiv (ap f {x} {x'}) Ξ³ x = singleton-equiv-lemma x (Ξ» x' β ap f {x} {x'}) (pointed-subsingletons-are-singletons (Ξ£ x' κ X , f x β‘ f x') (x , (refl (f x))) (s x)) embedding-criterion-converse : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-embedding f β ((x' x : X) β (f x' β‘ f x) β (x' β‘ x)) embedding-criterion-converse f e x' x = β-sym (ap f {x'} {x} , embedding-gives-ap-is-equiv f e x' x) embeddings-are-lc : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-embedding f β left-cancellable f embeddings-are-lc f e {x} {y} = β embedding-criterion-converse f e x y β embedding-with-section-is-equiv : {X : π€ Μ } {Y : π₯ Μ } (f : X β Y) β is-embedding f β has-section f β is-equiv f embedding-with-section-is-equiv f i (g , Ξ·) y = pointed-subsingletons-are-singletons (fiber f y) (g y , Ξ· y) (i y) NatΞ : {X : π€ Μ } {A : X β π₯ Μ } {B : X β π¦ Μ } β Nat A B β Ξ A β Ξ B NatΞ Ο f x = Ο x (f x) NatΞ -is-embedding : hfunext π€ π₯ β hfunext π€ π¦ β {X : π€ Μ } {A : X β π₯ Μ } {B : X β π¦ Μ } β (Ο : Nat A B) β ((x : X) β is-embedding (Ο x)) β is-embedding (NatΞ Ο) NatΞ -is-embedding v w {X} {A} Ο i = embedding-criterion (NatΞ Ο) Ξ³ where Ξ³ : (f g : Ξ A) β (NatΞ Ο f β‘ NatΞ Ο g) β (f β‘ g) Ξ³ f g = (NatΞ Ο f β‘ NatΞ Ο g) ββ¨ hfunext-β w (NatΞ Ο f) (NatΞ Ο g) β© (NatΞ Ο f βΌ NatΞ Ο g) ββ¨ b β© (f βΌ g) ββ¨ β-sym (hfunext-β v f g) β© (f β‘ g) β where a : (x : X) β (NatΞ Ο f x β‘ NatΞ Ο g x) β (f x β‘ g x) a x = embedding-criterion-converse (Ο x) (i x) (f x) (g x) b : (NatΞ Ο f βΌ NatΞ Ο g) β (f βΌ g) b = Ξ -cong (hfunext-gives-dfunext w) (hfunext-gives-dfunext v) a _βͺ_ : π€ Μ β π₯ Μ β π€ β π₯ Μ X βͺ Y = Ξ£ f κ (X β Y), is-embedding f Embβfun : {X : π€ Μ } {Y : π₯ Μ } β X βͺ Y β X β Y Embβfun (f , i) = f